Environmental Research at GKSS

Geesthacht, 1-2 October 1996

Hans von Storch

(Speaker of Forschungsschwerpunkt)

The Objectives of Environmental Research

Thus, environmental research is to some extent a

basis research field

dealing with fundamental physical-chemical-ecological questions, but at the same time an

applied research field

answering concrete questions from societal users.

Specifics of Environmental Research

- Large systems.
- •Interrelationship in space and time.
- Public relevance.

The Objectives of Environmental Research

- •Understanding of the dynamical processes controlling the state and its anthropogenic and natural variations.
- •Determination the system's sensitivity to external factors and its natural range of variation.
- •Analysis of the current and past state of the system.
- Prediction of its near future development.
- •Derivation of scenarios of possible consequences of anthropogenic modifications

The Role of Observational Data

- the basis of the analysis of the present state and possible alarms if anthropogenic effects are passing critical thresholds.
- the statistical evidence for the determination of "geogenic" noise, against which any anthropogenic signals have to be compared.
- the empirical basis for reconstructions of past states.
- the empirical evidence for verifying quasi-realistic models against.

The Role of Monitoring

The Role of Numerical Models

There are two types of **models** in environmental research

- conceptual models aimed at the understanding of the systems dynamics
- quasi-realistic models which approximate reality in detail and may be used for
 - interpolating observed data ("analysis"),
 - extrapolating observed data ("prediction, scenarios")
 - executing experiments on the system's sensivity to changes in external factors and dynamical components

To a second

.

Environmental Research at GKSS

- Matrix organisation: Interaction of institutes through time limited projects.
- "Double Pull": Interaction with basic research institutions and clients at governmental agencies and commercial enterprises. Spawning of small companies.

IX Interconnection of research fields

A: Institute of Physical and Chemical Analytics

P: Institute for Atmospheric Physics

G: Institute of Hydrophysics

- basic research
- institutes ("Vorhaben")
- cooperation with universities Max Planck institutes etc.

cooperation with governmental agencies commercial companies etc.

The "double pull

Plan of Presentation

- •Introductory remarks by Forschungsschwerpunktsprecher (now)
- Presentation of exemplary work characteristic for the type of research pursued by GKSS. (this morning)
- •Presentation of Project Fields by posters. (this afternoon)
- •Visit of Institutes. (tomorrow morning)

Ziemer

Achievements

- Technology and know-how for in-situ observations of the hydrographic, and biogeochemical state of rivers estuaries and coastal seas (nutrients, suspended matter, waves, currents, topography of river and sea bed, contaminants, multi-element and species analytics)
- Know-how for the calibration and interpretation of remotely sensed data (examples: MERIS, ScaRaB, newly acquired cloud radar, LIDAR, ERS)
- Development and test of new and cost- effective monitoring strategies of the contaminant and nutrient load of rivers (example: Elbe)
- Capabilities for modelling hydrodynamics and biogeochemical processes in rivers, estuaries and coastal seas (examples: Elbe, Odra estuary, Wadden Sea)
- Capabilities for modelling the elements of the water and energy cycle in a catchment (atmospheresoil- sea; example: Baltic Sea)
- Techniques for combining observational evidence and quasi-realistic models (example: mercury cycle and contaminants in the Elbe, clouds)
- Implementation of GKSS mesoscale atmospheric circulation model GESIMA as community model at German Climate Computer Center and at other centers.

Future Perspectives- Science

EUROBASIN

• MAP techniques- Monitoring, Analysis and Prediction.

Coastal morphodynamics.

Reconstruction of regional decadal (and centennial) variations.

Salinity [PSU] at LV Borkumriff

Observation

---- Estimation

Future Perspectives- Organisational

•HGF

-the Helmholtz Research cooperation set up by all Grossforschungsanlagen in Germany.

Schools

-dissemination of knowledge about environmental systems in "schools".

Two NATO schools organized by Raschke, April 1997: "anthropogenic climate change".

HGF Environmental Research

Atmosphere and Climate Section 1 Speaker: Prof. Raschke, GKSS Global and Regional **Climate Systems** Speaker: Prof. Raschke, GKSS Geo- and Polar Sciences Speaker: Prof. Tilzer, AWI Soil Speaker: Prof. Munch, GSF Section 2 River Drainage Areas Water and Coastal Regions Speaker: Prof. Geller, UFZ Speaker: Prof. Fritz, UFZ Coast **Steering Committee** Speaker: Dr. Rosenthal, GKSS Speaker: Dr. Popp, FZK Section 3 **Biological Systems** Speaker: Prof. Kettrup, GSF **Technologies Section 4** Speaker: Dipl.-Phys. Arendt, FZK Sustainable Technologies Speaker: Dipl.-Phys. Arendt, FZK **Concepts**

Speaker: Prof. Paschen, FZK

Herrmann von Helmholtz-Association of German Research Centers

Section 2: River Drainage Areas and Coastal Regions

NOLTE-HOLUBE